Logo Help Portal
  • Démarrer

    Introduction

    • Onboarding overview
    • Initiation de projet
    • Email compliance
    • Gestion de Compte

    Données

    • Echange de données
    • Adaptation de données
    • Web data collection

    Channels

    • Email onboarding
    • Smart Insight
    • Predict
  • Formation
    • Online Self Learning
    • Vidéos d'intégration
    • Instructor Led Training
    • Webinaires
    • Séminaires
  • Guides d'utilisation

    Stratégie

    • Personnalisation
    • Automatisation
    • Data Monitoring

    Channels

    • Email
    • Application mobile
    • Web
    • Ads

    Add-ons

    • Smart Insight
    • Predict
    • Recommandations d'incitations
    • AIM
  • Articles de support technique

    Nouveautés

    • Quoi de neuf sur la Plateforme Emarsys ?
    • Fonctionnalités pilotes
    • Articles sur la RGPD et la Protection des Données
    • Release notes - archive

    Support

    • L'aide et le support chez Emarsys
    • Gérer votre profil d'utilisateur
  • |
  • Dévelopeurs
  • Etat du système
Besoin d’aide? Envoyer une demande
Français Deutsch English Español Русский Türkçe 简体中文
Connexion
  • Documentation_-Strategy_- Predict
  • Web Recommender
  • 0 Documentation_-Strategy_- Predict Web Recommender

Dans cette section :

  • Predict Web Recommender - Overview
  • Web Recommender Logics
  • Web Recommender Templates
  • A/B Testing Web Recommendations
  • Web Recommendations For Localized Websites
  • Web Recommender Reporting
  • Web Recommendations - Best Practices And Examples
  • Mobile Recommendations
  • in Emarsys42

    Expand all

    Predict Web Recommender - Overview

    Updated: 16 janvier 2018 18:33

    Toutes nos excuses, cette page n'a pas encore été traduite. L'équipe Localization d' Emarsys est en train d'y remédier et souhaite vous proposer toute la documentation en Français!

    Product documentation:

    • Web Recommender Logics
    • Web Recommender Templates
    • A/B Testing Web Recommendations
    • Web Recommendations For Localized Websites
    • Web Recommender Reporting
    • Web Recommendations - Best Practices And Examples

    Video tutorial:

    • How To Video - Analyzing Web Recommender Results

    Before you start, why not watch this short video about web recommendations?

    In order to use Predict recommendations, you need the Emarsys Data Collection JavaScript API implemented on your website.

    When you request recommendations through this API, with the help of the recommend command, you have to specify:

    • The recommendation logic you want to use.
    • The number of products to display in widget.
    • ID of the DOM element where the recommended products should be rendered. This DOM element needs to exist already when the recommend command is issued.
    • the template to use to render the recommended products, either directly or through the ID of the DOM element containing its text. The template should conform to the doT.js template syntax.

    In addition, you can specify:

    • A baseline of product IDs if you want to compare the performance of the Predict recommendations to an existing recommender.
    • A success handler which will be invoked before the recommended products are rendered. This way you can freely modify the set or order of recommended products, or their data. You may even decide not to render the recommended products in certain situations.
    • The language in which to render the recommended products (in the case of supported widgets).
    • Whether recommend is invoked from a test or staging environment, and as a consequence should not be logged on the Predict servers.

    Moreover, the Predict JavaScript API provides other commands which, when issued before recommend, can be used to instruct Predict to recommend only products which

    • are in a specific availability zone,
    • meet specific criteria based on product catalog properties (e.g. category),
    • do not meet specific criteria based on product catalog properties (e.g. category).

    The recommend command does not actually send the recommendation request to the Predict servers, for that, you have to issue the go command. After the Predict server received the requests, it computes the set of recommended products and sends it back to the browser. If you have specified a success handler in the recommend command, it will be invoked, so it will have a chance to modify the data objects corresponding to the recommended products. At the end, the success handler may or may not invoke the function responsible for rendering the recommended products. If you have not specified a success handler, the recommended products are rendered immediately according to the rendering template specified.

    You can check whether recommendations are properly requested and rendered by using the Inspector Gadget.

    In the template, you have access to the data objects describing the recommended products, in the form of JavaScript objects. These data objects contain the standard and custom properties specified in the product catalog for the given product.

    We suggest first familiarizing yourself with the recommender logics we offer, then start working on implementation.

    Cet article vous a-t-il été utile ?

    Vous avez d’autres questions ? Envoyer une demande
    Retour en haut

    You may also be interested in:

    Articles associés

    • Web Recommender Logics
    • Web Recommender Templates
    • Data Collection JavaScript API Reference
    • Web Recommendations - Best Practices And Examples
    • Préparer votre fichier de données produit
    Copyright © 2019 Emarsys eMarketing Systems. All rights reserved
    Legal Notice Privacy Policy Master Services Agreement Anti-spam Policy
    test new search